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Abstract

The results of molecular dynamics (MD) simulations are compared to transition state theory estimations for formation of conformational
defects in a polymer crystal. The rates of conformational defect formation and destruction are obtained in terms of a distribution over possible
conformational states. The rate constant obtained by this method, when normalized by the number of possible defect sites, is independent of
the size of the system, in apparent contrast with the results of MD simulations. The difference is interpreted in terms of the effective
temperature of the MD calculation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The simulation of large molecular structures such as
polymers and proteins with molecular dynamics (MD)
modeling has become common [1]. Recently, however,
serious questions have been raised as to whether a simula-
tion based in classical mechanics can correctly describe a
quantum system [2,3].

In several recent calculations we have observed large
amounts of conformational disorder in MD simulations of
crystalline polyethylene [4—12]. In particular, the amount of
disorder, as measured by the fraction of bonds which
undergo a gauche—trans isomerization, appears to increase
nonlinearly with the size of the system. A detailed under-
standing of the conformational disorder of the crystals is
fundamental to understanding such mesophase structures
as liquid crystals, plastic crystals, conformationally disor-
dered (CONDIS) crystals, which lie somewhere between the
melt (liquid phase) and crystalline (solid phase) structures
[4].

In the present study, we present a model based on a
statistical theory of the gauche—trans isomerization rate
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constant. Such a model can be considered independent of
the more traditional MD simulations which are used to treat
such systems. In Section 2 we briefly describe the standard
theories of unimolecular reactions in terms of transition
state theory and relate the parameters involved to the
properties of a polymer crystal. We obtain a rate constant
for the total number of conformational defects per bond as
an average over a distribution of canonical rate constants for
polymers with different numbers of defects. In Section 3 we
contrast the results to those obtained from direct MD simu-
lations, and discuss the limitations of the later.

2. Theory

The gauche—trans isomerization of a polymer crystal is
one example of a unimolecular reaction. There are two
common approaches which give reliable estimates of unim-
olecular rate constants, transition state theory for canonical
rate constants, and RRKM theory for microcanonical rate
constants [13—18]. Both theories require similar parameters
to be applied, mainly the energy of the barriers and the
harmonic vibrational frequencies for the reactants and
the transition state regions. These parameters allow for the
calculation of the partition functions in the canonical case
and the densities of states in the microcanonical case. We
derive here rate constants for the canonical case for a system
which has a variety of different initial conditions (the micro-
canonical case and its relation to the canonical case is
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described in Appendix A). For the canonical case, we use
the traditional grand canonical partition function [19],
where the additional variable is the number of conforma-
tional defects in the polymer chain.

In the present case, we make several simplifying approx-
imations. We assume that introduction of a conformational
defect is done at an energy cost of V,, regardless of the
location of the defect and its relative positions to any
other defects present. Such a simplification is unnecessary
in the event where detailed information on the energies and
structure is known, but in the present case the simplification
that defects are non-interacting allows an exact expression
of the partition functions and rate constants. We also make
the assumption that the vibrational frequencies of the poly-
mer do not change with the introduction of a conformational
twist. Again, this approximation would be unnecessary
when detailed information about structures is known, but
provides a convenient simplification for the present treat-
ment. In essence, the two approximations indicate that the
introduction of a conformational defect merely displaces the
harmonic oscillator to a higher energy. We consider a
system made up of a polymer which has N possible locations
for a conformational defect, or a position which has under-
gone a trans—gauche flip. In the non-interacting approxima-
tion, these defects could, in fact, be located in a number
of different polymer strands making up a polymer crystal.
In the case of a collection of m, n-mers we would have
N = m(n — 1), with the corresponding number of possible
transition states.

The traditional TST rate constant for a reaction with one
possible transition state is given by [13]

kT OF
K(T) = i% (1)

Here, kg is Boltzmann’s constant, 7 the temperature, h
Planck’s constant, Q the canonical partition function of
the reactant and Q' the canonical partition function of the
transition state, and explicitly includes the exponential
difference in energy for the lowest state and the threshold
of reaction, exp(—VT/kBT). The transition state partition
function differs from that of the reactant by changes in the
vibrational frequencies, but mainly in the absence of one
degree of freedom, which corresponds to the motion along
the reaction coordinate. As a result, the expression reduces
to the form k = v exp(—V'/kgT) where v is the effec-
tive vibrational frequency for the omitted coordinate, which
under the approximations introduced above is identical for
all polymers, regardless of the number and location of
conformational defects. An approximation that is frequently
employed to estimate the rate constant is to assume that the
rate constant is simply that of the case of only one transition
state, multiplied by the number of identical transition states,
with an appropriate scaling to obtain a per bond rate
constant [4]. We see below that this is consistent with the
present treatment; however, in the present treatment we also

establish rate constants for the formation and destruction of
conformational defects.

In the present case there is the possibility of slightly
different rate constants for polymers with different numbers
of conformational defects. In this case it is necessary to
perform an average over the appropriate rate constants. As
a result, we introduce a grand canonical partition function,

N (NY . .
E=) ( , )2"Q(/) e /T, )
j=0\J

In this case, Q(j) is the partition function for the polymer
system with j conformational defects, evaluated at the zero-
point energy of that particular conformational isomer. The
binomial coefficient represents the number of possible ways
of introducing the conformational defects into the system,
and the factor of 2/ arises from the existence of both a
gauche(+) and gauche(—) configuration for each confor-
mational defect. Using the simplifications introduced
above, we note that each of the conformational partition
functions Q(j) = Q is constant, and the series can be
evaluated exactly,

E=00 +2e TV, 3)

The function Z gives the normalization of the probability
distribution for finding j conformational defects P(j),

N\ . .
PG)=(1 + e—Vo/kBT)—N( . )2] o VolksT 4)
J

The thermal rate constant is the sum of the rate constant
for each individual conformational isomer, times the prob-
ability of finding that conformational isomer,

kK(T) = P()kAT). )
J

The individual rate constants for a particular conformational
isomer are given by Eq. (1), multiplied by the number of
identical transition states, which is N — j, leading to the
overall rate constant

_ k
K(T) = (1 + 2 ¢ Wty kel

z(N N

N\ . .
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The summation, after suitable rearrangement, is conveni-
ently evaluated as the derivative of the sum of a binomial
series, yielding the final expression for the per bond rate

KT) =

“h QL 1+2exp(—Vy/kgT)
A similar expression naturally exists for the rate constant for

reverting to a state with fewer conformational defects. In
this case, the distribution function P(j) remains the same,



B.C. Hathorn et al. / Polymer 43 (2002) 615-620 617

however, the thermal rate constants are slightly different,
owing to a shift of V; in the barrier height for the reverse
process, and the presence of j identical transition states
for the reverse process. The average rate corresponding to
Eq. (6) is

k_(T)=

t N
(1+2 e“’U’kBT)‘NkB_T o e VolksT Zj(N)zj o IVolksT
h 0 =0 \J
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The per bond rate constant for the reverse process is now
given by
kg7 Q' 1

oD = 5 G e ®)
The total per bond rate of transitions, given by the sum of
the forward and backward rate constants, is indeed given by
Eq. (1) subject to the constraint that it is recognized that it
will be the sum of both the forward and backward reactions.
If the reaction measured is that in only one direction, the
required rate constants are given by Eqgs. (6) and (9).

We note, however, that the sum of the per bond rate
constant is, in fact, independent of the size of the system,
N, as our intuition from the physical behavior of macro-
scopic systems suggests.

3. Results and discussion

We begin with a few comments on the limitations of the
present theory. The present theory is kinetic in nature, not
thermodynamic. As a result, it predicts the rate at which
isomerizations in the crystal will occur, leading to crystal
defects. The present theory does not speak to the thermo-
dynamic stability of these systems where isomerizations
have been introduced. The thermodynamic stability of the
systems is best addressed in terms of the overall equilibrium
constant of the transition. The equilibrium properties of the
system can frequently be treated separately from the
dynamic properties through the use of Monte Carlo and
similar techniques [3]. The present treatment does, however,
provide estimates of the time constants for interconversion
between various isomers, and shows that as the size of the
system gets larger in a thermal system, the rate constant
should be largely unchanged, in the approximation that
the defects introduced into the crystal are non-interacting.

We now seek to compare the results of the transition state
theory model, Egs. (6) and (9) to the rate constants predicted
by MD simulations which are commonly employed.
Although the MD simulation is formally accomplished by
integrating the equations of motion of the system at a fixed
energy, E, we note that this microcanonical approach is
entirely equivalent to the canonical treatment, when the
energy used is the average energy which would be expected

for the temperature in Eq. (1). A demonstration of this is
given in Appendix A by comparing the microcanonical
reaction rate and the thermal reaction rate for an appropriate
ensemble average.

In the present model, we find that the total rate of transi-
tions from gauche to trans and vice versa on a per site basis,
should be k + k_;, which is independent of the size of the
system, N. In a straightforward plot of the data from a set of
MD calculations [4] shown in Fig. 1, we find that for the MD
calculations there is a significant dependence of the calcu-
lated rate constant on the size of the system, and that this
trend is consistent over a range of temperatures. In order to
align the data for the different calculations, we must assume
a translation to the left in the larger systems, corresponding
to a reduction in the effective temperature. The enhance-
ment of the scaled rate constant between the largest and
smallest systems in these calculations amounts to a shift
of approximately two orders of magnitude, well within the
expected uncertainty of the MD simulation.

The rate constant being a function of the size of the
system leads to the conclusion that the use of MD in this
way must be utilized with caution. In the present case, there
are several likely sources of the effect. We note that the
effective temperature of the system in the MD simulation
has been obtained by use of the relation [4]

3 1
(Exin) = ENkBT = Z E(Pﬁi + Y+ P, (10)

where i indexes each of the particles in the simulation and
the p;‘s are the momenta and m; the particle mass, and the
system is composed of N particles. In this case, all of the
energy of the system is available to access the reaction
coordinate, and also for supplying energy for producing
configurational defects. In a true quantum mechanical
system, however, a certain fraction of the energy, corre-
sponding to the zero-point energy, must be unavailable for
these purposes, and thus, the total energy available in the
classical mechanical calculation tends to be too large, and
thus, the effective temperature appears to be too high,
producing a rate constant which is too large. The excess
of energy is only increased by increasing the size of the
system as the number of vibrational motions and their corre-
sponding zero-point energies, is increased. A well-known
example of this problem is evidenced in a very large mole-
cule at low temperatures, where the zero-point energy alone
is sufficient to overcome the activation energy for many
reactions.

Another influence of the excess energy which contributes
to the discrepancy between the transition state theory and
MD reaction rate constants is the issue of the conforma-
tional disorder. The excess of available energy enhances
the conformational disorder, since the higher “effective
temperature” drives the populations to systems with more
conformational defects in Eq. (4). The effect of this is to
drive the system to a greater weighting of the reactions for
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Fig. 1. Arrhenius plot of rate constants obtained from MD simulation [4]. Lines are fitted to the four individual data sets.

the reverse process, which naturally have a faster rate, due
to smaller activation energy. The tendency of the system to
relax to one with a large amount of conformational disorder
is demonstrated in the MD simulations of large polymer
crystals, where with increased size the system loses nearly
all semblance of structure.

In the present result, the system is expected to equally
populate all regions of the reactant and transition state phase
space, whereas in the classical mechanical simulations the
energy tends to concentrate in the lowest frequency modes
[2,8,23]. In the real system, the zero-point energy must be
conserved in each of the modes, preventing the concentra-
tion of energy in the low frequency modes. The so-called
“adiabatic leak” [3,20—22] in the classical mechanical simu-
lations allows the energy to flow into the low energy modes,
in contrast with the principles of quantum mechanics. Typi-
cally, the reaction coordinate tends to be a low frequency
mode, and thus, if the amount of energy in this mode is too
large, the predicted reaction rate is too high. In addition to
the failure to conserve the zero-point energy, the energy in
the MD simulations appears to be overemphasized in the
low frequency modes [2,8,23]. This effect has been attrib-
uted elsewhere to the onset of “too much classical chaos” in

the large systems, where, even below the total zero-point
energy of the system, large scale conformational motions
can occur [3].

An important consequence of this study is to call into
question the rates predicted from MD simulations for
large systems. Currently, modeling is done on proteins to
describe the collective motions which lead to such phenom-
ena as the formation and migration of conformational
defects or protein folding [1,6,7,9,11]. The concentration
of energy in low frequency modes and the effective
temperature which is too large in the simulations will lead
to rates of protein folding which are too large, can interfere
with the interpretation of the results, and could potentially
undermine the usefulness of the study. In particular, it is
likely that the timescales for conformational motion deter-
mined from classical MD simulations may be too short. It
may be possible to mitigate the effects of the “adiabatic
leakage” by restricting the simulations to very short time-
scales when this effect is minimized [3], however, in short
timescales the sampling of the transition state region is
likely to be too infrequent to provide meaningful estimates
of the rate constants. It remains to be seen if successful
modifications of the MD studies can be made to properly
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scale the effective temperature and to successfully over-
come the errors introduced by allowing the energy to
concentrate in the low frequency modes through the
mechanisms of “adiabatic leak” and the onset of classical
chaotic motion.
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Appendix A. Relation between the canonical and
microcanonical rate constants

In present example, we compare the canonical rate
constant obtained by the transition state theory to one
which is obtained from a classical mechanical simulation
at fixed energy, e.g. a microcanonical reaction rate. It is
possible to demonstrate that the two are, in fact, equivalent,
when an appropriate distribution of states is employed. We
demonstrate this here by the introduction of a microcanoni-
cal ensemble where there is an additional degree of freedom
which corresponds to the number of conformational defects.

In this case, the necessary quantities are the density of
states of the system in the case where there are j conforma-
tional defects, for a fixed energy, E

N
PG, E) = (
J

)ZJP(E A (Al
where p(E — jV,) is the density of states of a collection of
harmonic oscillators with a minimum at the zero of energy
for the lowest state, located at E = jV,,. In a practical calcu-
lation one could employ a classical count of the density of
states and include the zero-point energy [14—17], however,
the present treatment is independent of the nature of the
density of states employed. The binomial coefficient arises
from the different possible arrangements of a system with j
conformational defects. The microcanonical probability
distribution of conformational states is now given by

PG, E) = p(j, E)XE) ™' (A2)

with

Q=73 p(,E). (A3)
j=0

The microcanonical (RRKM) reaction rate, averaged over

the ensemble of conformational states is now given by

KE) =Y p(j, E)(, E), (A4)
J
with the rate constant given by
N'(.E)
U e A

Here N' (E,j) is the sum of states at the transition state,
given by
N'E.j) = (N = )N'(E = jVy), (A6)

where N'(E) is the sum of states for a single transition state.
We note that if a Boltzmann average is performed over the
averaged reaction rate,

[ E(E) exp(—E/kgT) dE
| XE) exp(—E/kgT) dE

k(T) = (AT)

we arrive at exactly the transition state theory expression,
Eq. (6), when we use the standard relations,

0= Jp(E) exp(—E/kgT) dE and

kgTQ' = JNT(E) exp(—E/kgT) dE.

For a macroscopic sample, the distribution of energies
represented by a Boltzmann distribution is very narrow,
and corresponds to the average energy in Eq. (10).
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